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SOLUTION OF VARIATIONAL PROBLEMS OF GAS DYNAMICS 

WITH PHYSICOCHEMICAL TRANSFORMATIONS 

V. N. Makarov  UDC 533.6.01 

Many problems related to a moving gas with physicochemical transformations can be reduced to finding 
extremc values of functionals with respect to some sets of parameters determining the system. Such are the 
problems of finding the contour of a supersonic nozzle with maximum thrust,  determining the body contour 
with minimum resistance to gas flow, problems of planning experiments aimed at obtaining reaction rate 
constants, etc. Any problem of purposeful planning, controlling or making necessary decision can be reduced 
to the problem of finding an extremum of a certain functional in the space of parameters. 

Mathematically, such problems can be formulated as problems of nonlinear programming, which are 
solved, as a rule, by numerical methods. 

1. A variational gas-dynamic problem related to determination of the op t imum contour of a supersonic 
nozzle with allowance for physicochemical transformations is considered. As independent variables, we choose 
the Cartesian coordinate x along the nozzle axis and the flow function r in the form de = -pvyrdx + puyrdy 
(y is the Cartesian coordinate perpendicular to the x axis). 

The initial system of equations with allowance for vibrational relaxation processes and chemical 
reactions has the form [in a stationary formulation ignoring viscosity and heat conductivity (see, for 
example, [11)1 
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Here, Eq. (1.1) is an implication of the continuity equation; (1.2) and (1.3) are the equations of motion; (1.4) is 
the equation of change in concentrations during chemical reactions; (1.5) is the equation of vibrational-energy 
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relaxation; (1.6) is the equation of energy; (1.7) is the equation of state; and (1.8) and (1.9) are the equations 
of the streamline V; u and v are the pl,,jections of the flow velocity w onto the axes of the rectangular Cartesian 
coordinate system; p, T, and p are the gas pressure, temperature, and density, respectively; R0 is the universal 
gas constant; H and H0 are the enthalpy of the unit mass of the gas at an arbitrary point and the stagnation 
enthalpy; ei is the energy of the vibrational degrees of freedom; ci are the mote-mass concentrations of the 
components [ci = Ni/(NAp), where Ni are the particle concentrations in cubic meters and NA is the Avogadro 
number]; n is the number of chemical reactants; nv is the number of vibrational modes; and r = 0 and r = 1 
denote the plane and axisymmetric gas flow, respectively. 

Taking into account only the translational, rotational, and vibrational degrees of freedom of the gas 
and using a harmonic oscillator to model the vibrational mode, we can specify the system parameters as 

n n n - ' ~ n  It  

e i =  I / [exp(Oi /T i ) -1] ,  H =  ~_cih ~ + RoTy~ci(5/2  +ri) + Ro Y~ aiOici(i)ei, 
i----1 i=1 i = n + l  

where h [ is the enthalpy of formation of the ith particle; ri is the number of rotational degrees of freedom of 
the ith particle; ei is the vibrational energy of the ith mode per one molecule and one quantum; Ti and Oi are 
the vibrational and characteristic temperatures of the ith mode, respectively; ai is the degeneracy factor of the 
ith vibrational mode; and cj(i) is the mole-mass fraction of the ith mode in the j t h  particle. The expression 
for enthalpy can also be written as 
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Here l/i t  = ~ c}; ~i = ci/ ~] ck = ci#;/~ is the molecular weight of the mixture; and ~i is the mole fraction 
k=l  k=l  

of the ith component. 
2. We assume that in a gas of n components m reactions of the following type can occur: 

 +.Kj " 
i= l  i= l  

Here K i is the rate constant of the direct reaction; v + and vi" ~ are stoichiometric coefficients; Y~ are the 
starting substances and the reaction products. The reverse reaction with rate constant K_j can be written 
similarly. If the mole-mass concentrations c / a re  used to define the concentration characteristic of the given 
substance, the phenomenological equations of chemical kinetics have the form 

- -  = - = ( p c k )  , k ,  dt P ~=1 J3ijWj "= ~qKj _ v+" 

where i = 1 ,2 , . . .  ,n; t is time; flij = v'~ - v+; p is the density of the gas mixture; Kj is the rate constant of 
the j t h  reaction; and Wj is the direct-reaction rate. 

If one singles out terms that characterize the change in the amount of substances due to both the direct 
and reverse reactions, the latter equation takes the form 

dci _ 1 ~ ~3ij (Wj - W_j), 
dt p j 

where W_j is the reverse-reaction rate, which can be written similarly to Wj. 
The equations of relaxation for the vibrational energy of mode i, which is modeled by a harmonic 

oscillator, will be used under the following assumptions: 
- -  the energy exchange inside each mode occurs much more rapidly than the intermode VV'  exchange, 
vibrational-translational V T  exchange, and chemical reactions; 
- -  the rotational degrees of freedom are in equilibrium with the translational degrees of freedom; 
- -  the Maxwell distribution in the translational degrees of freedom is preserved. 
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The system of relaxation equations for the vibrational energy is written for ei (which is the average 
number of vibrational quanta of t',,e ith type per one molecule) in the form [2] 

dei i i 
d--[ = O'vT + Qw' ,  + Qcv .  

Here the term Qiv T takes into account the vibrational-translational VT exchange, i Qvv'  the intermode VV ~ 
exchange, and Q~v the change in the vibrational energy due to chemical reactions involving vibrationally 
excited molecules (the CV process); 

= ( c~  - = c j / ( , , j  Z : c k )  ; 
3=1 k 
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where e ~ is the equilibrium value of the vibrational energy ei at Ti = T; rii is the time of vibrational relaxation 
of mode i upon collision with molecules of type j; kim is the rate constant of V W  exchange between modes 
(molecules) i and m; Oi and Om are the corresponding characteristic vibrational temperatures; and the 
expression i Qvv'  is written for a single-quantum exchange between molecules. 

For the multi-quantum exchange, the form of i Qvv' is somewhat more complex. Let in multi-quantum 
VW exchange s quanta of mode i exchange with q quanta of mode m. Then the expression for i Qvv'  has the 
form [3] 

Q~v' = kim(slai)[eq(ei + 1)' exp (qOm/T - sOi/T) - (em 4- 1)qeS] 

(ai is the degeneracy factor of mode i). According to the principle of detailed balancing, the rate constant of 
the reverse process kmi = kim exp [(qOm - sOi)/T]. 

The change in the vibrational energy ei of the ith type of oscillations in the j t h  molecule as a result 
i of chemical reactions is taken into account by the term Qcv in the form [2 l 

m 
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where Wk is the rate of the kth chemical reaction; e* k is the mean value of the vibrational energy lost (or 
gained) by the mode of type i in each act of the chemical reaction of type k. 

A program for integrating Eqs. (1.1)-(1.9) for the flow of relaxing gas in the nozzle was designed. 
The program is universal, because the formation of the right-hand sides of kinetic equations (1.4) and (1.5) is 
based on the symbolic equation for reactions which are written as an ordinary molecular formula (for example, 
02 + M ~ 0 + 0 + M). The terms QivT , i i Qvv' ,  and Qcv, which determine the change in vibrational energy 
ei in VT, VW,  and CV processes, are formed in a similar manner. A complete list of the processes along with 
data on the rate constants are stored as a separate data base. Thus, only the title of the data base is changed 
when one passes to another system of kinetic variables. 

The program has a built-in editor for checking the base of physicochemical data in use. The editor 
checks whether the formulas of processes are recorded correctly. In particular, it picks the processes whose 
formulas contain-elements that are not specified in the base of components. Also, the editor checks that 
the laws of conservation of mass or charge (for reactions involving charged particles) are satisfied for each 
reaction in the base. Such a routine check allows one to avoid occasional slips while forming the data base on 
a computer. 

3. Suppose we need to determine a specific solution described by system (1.1)-(1.9) that is equivalent 
to finding an extremum of a functional F(Ai) from the controlling parameters Ai under certain (in general, 
nonlinear) restrictions on the parameters Ai 

gm(Ai)=O, r e = l , 2 , . . . ;  gk(Ai)>/0,  k =  1 , 2 , . . . .  

To find the model optimization parameters it is necessary to move to dimensionless variables in 
Eqs. (1.1)-(1.9), in the initial and boundary conditions, in the functional F(Ai), and in the restrictions 
on the parameters Ai. 
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Analysis of the dimension of the problem shows that the flow field is determined by the following 
parameters: To, Hi, ~0 ak, yo/Lo, and L/Lo. Here L0 is the characteristic length of the problem; To is 
the initial temperature ahead of the nozzle entry; ~0 are the initial concentrations of the components at 
point x = x0 (e.g., the initial values of mole fractions); ak are dimensionless parameters that determine the 
distribution of the dimensionless pressure p/po = pl(z/Lo, ak) along the nozzle axis; y0 is the characteristic 
dimension along y; and Hi are parameters that appear when one moves to dimensionless variables in kinetic 
Eqs. (1.4) and (1.5). If the nozzle length L is chosen as the characteristic length L0, then L/Lo = 1. 

The solution of the problem in a one-dimensional formulation is independent of the parameter d = yo/L. 
Such a dependence appears only when the process is two-dimensional. 

The specific form of the parameters Hi depends on the specific form of the kinetic equations. For 
the equations of VT and VV' relaxations, Hi = Hi = poLo. For monomolecular reactions, II1 = L0. For 
bimolecular reactions, 1-I1 = polo, and for trimolecular reactions, Ill = p2oLo. Thus, if the equations of 
vibrational relaxations (with allowance for VT and VV' processes) and(or) bimolecular reactions are used in 
calculations, the controlling parameter is the combination poLo (i.e., the flow will be the same, if H1 = polo is 
conserved). If, in addition, one takes into account monomolecular and trimolecular reactions, the parameters 
P0 and L0 become the controlling parameters of optimization. 

Sometimes, simultaneous allowance for monomolecular, bimolecular, and trimolecular reactions (along 
with reactions of higher order) can cause some mathematical difficulties in determining the actual optimum. 
This can be illustrated by the following example. Suppose that the initial system of kinetic equations is 
determined by bimolecular reactions. In this case, the complex poLo is the optimization parameter. If an 
insignificant monomolecular reaction with a small reaction-rate constant is added to such a system, then, 
from a formal standpoint, we should consider two optimization parameters: p0 and L0, although the complex 
Ill = poLo still remains the actual optimization parameter. In this case, if the tested functional has p0 and L0 
among the parameters over which optimization is performed, its multidimensional hypersurface has an almost 
degenerate "gully" along the line poLo = const, which complicates significantly the search for an optimum. 

In this connection, it becomes important to choose the most essential physicochemical processes in 
solving variational problems of gas dynamics by direct methods [4]. On the one hand, the chosen leading 
processes make it possible to expedite flow-field calculations (to decrease computer time), and on the other 
hand, they contain the necessary structure of the types of reactions and processes that determine the set of 
optimization parameters. 

As was been pointed out above, the full set of determining optimization parameters is found in moving 
to dimensionless parameters in the tested functional and restrictions on parameters. 

4. Two problems are distinguished in the theory of the Laval nozzle: direct and inverse. The direct 
problem consists in finding the flow field for a given nozzle contour under certain conditions on the initial 
and final cross-sections of ~he nozzle. It can be reduced to a boundary-value problem for equations of gas 
dynamics. The inverse problem consists in determining the flow field under conditions specified on the known 
surface and conditions set on the initial cross-section of the nozzle. This problem can be reduced to a Cauchy 
problem. To find the flow field, let us solve the inverse problem of a Laval nozzle. In this case, the flow field 
in the region G{xo ~< x ~< xk, ~b0 ~< ~b ~< ~'k} can be found if, for example, the pressure distribution along the 
curve tb = ~0 (~b0 = 0 on the axis) and the parameter values on the x = x0 cross-section are specified. By 
using an appropriate finite-difference scheme, one can find the flow field in region G. 

The general scheme of obtaining a numerical solution can be found, for instance, in [1]. We used it to 
calculate the gas flow field with physicochemical transformations in designing an optimal gas-dynamic ozone 
generator whose major unit was a supersonic Laval nozzle. The possibilities of such an ozonator were discussed 
in [5], where the optimum characteristics of the ozonator were obtained in a one-dimensional stationary 
formulation. 

The basic design of the gas-dynamic ozonator is as follows. An oxygen-containing gas heated to 
temperature To is forced with pressure p0 through a supersonic nozzle. Upon cooling inside the nozzle, the 0 
atoms that have formed by thermal dissociation of 02 molecules at the nozzle inlet promote the formation of 
ozone molecules O3 (primarily at the expense of the O + 02 + M --* O3 + M reaction). 
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To increase the ozonator efficiency, it was assumed in [5] that an excess concentration of 0 atoms 
was created in a certain crczs-section of the nozzle (for example, by an electric discharge). The optimum 
characteristics of this ozonator were determined in [5]. 

The actual two-dimensional character of the gas flow inside the nozzle can alter significantly some 
characteristics of this optimum ozonator. In this connection, we considered the problem of obtaining maximum 
concentrations of ozone Os with allowance for the two-dimensional character of the gas flow. The parametric 
distribution of the pressure p along the nozzle axis was specified as 

pl (x /L ,  ak) = P/Po = (1 + / 3 ) - l [ exp ( - a (x / L ) l +q )  + fl] = pl(x /L,a ,q , /3) ,  

where a > 0, q > 0, and [3 > 0 are parameters that determine the pressure distribution (al = a, a2 = q, 
and a3 = /3). The parameters have the following meaning. When x --* L and the exponent tends to zero, 
the parameter fl determines the degree of flow expansion on the axis, pl --* /3/(1 +/3), and the parameter 
a is the pressure gradient (and, hence, also the temperature gradient) in transition from the subsonic to the 
supersonic regime. The quantity q is an additional parameter for varying the pressure between 0 and L. 

Next, it is assumed that additional 0 atoms appear in the plane l = 1(r in region G under the 
following additional restrictions: 

(a) O atoms are formed by dissociation of 02 molecules, so that the following natural condition is 
satisfied on the jump surface l = /(r z(O)l + z(02)l = z(O)2 + z(O2)2, z(O)2 > z(O)l, where z(O)l,  
z(O2)1, z(O)2, and z(O2)2 are the mass fractions of the components O and 02 prior to and after the jump; 

(b) the value of the jump AO = z(O)2 - z(O)l is the same over the entire plane/(r  
(c) the heat Aq expended at the jump goes exclusively to dissociation of 02 molecules, i.e., Aq = 

Aclh ~ + Ac2h ~ = Aclh  ~ (cl, c2, h ~ and h ~ are the mole-mass concentrations and enthalpies of formation of 
O atoms and 02 molecules respectively; by definition, h ~ = 0). In addition, it is assumed that the vibrational 
temperature Tv of molecular oxygen does not change during the jump. Values of the gas-dynamic parameters 
are found from ordinary relations for the jump (see [6], for example). It is easily seen that such a "kinetic" 
jump for small values of AO is a weak discontinuity surface of the gas-dynamic variables. 

The following three parameters define the plane/(r  

l ( r  = (x . /L)(1 + 71r + 72r 2) = x',(1 + 7~r + 71r �9 

i x . / L ,  and r is a normalized flow function: r Here, x. = = r = y l / L  and Yl = YI~=o. Thus, the 
optimization parameters for the mole fraction ~3 of ozone are as follows: 

To, P0, ~0, a, q,/3, L, x',, 7[, 71, AO, d. (4.1) 

In our case, P0 and L are independent optimization parameters, inasmuch as the system takes into account 
essential bimolecular and trimolecular reactions 0 + 0 3  ~ 02+02 ,  O+O2+M ~ O3+M, O2+M ~ O+O+M,  
and also the V T  relaxation of the vibrational energy of oxygen O2(v)+ M ~ 02 + M (M is any of the particles). 

The reaction rate constants entering in the generalized Arrhenius form K = AT" exp ( - E / T )  (A, n, 
and E are parameters) and the accuracy of the suggested recommendation are given in [5]. The vibrational- 
translational relaxation of molecular oxygen has been widely studied. The VT relaxation times used here can 
be found in [7]. The calculations have shown that under the studied conditions the vibrational temperature 
of O2 is close to the translational temperature. This is also confirmed by experiments on recombination of 
oxygen in nozzles [8]. 

Optimization over all parameters with the purpose of obtaining maximum values of the ozone 
concentration under the assumption of two-dimensional gas flow is time consuming. In this connection, the 
optimization problem was solved only for some parameters (4.1) that are of interest from the viewpoint of 
two-dimensionality of the gas flow. It is assumed that the equilibrium composition in the receiver is determined 
for the starting pure molecular oxygen 02 at To = 1500 K p0 = 20 atm, and the optimum is sought for the 
parameters 

a, q,/3, L, x',, 71, 72, (4.2) 
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where the first four parameters determine the parametric dependences of the flow field in the nozzle, and the 
last three determine the shape of the plane of the jump in concentration of O molecules. The concentration 
jump AO is assumed to be equal 0.1%. 

In search for the optimum, we imposed the following restrictions on parameters (4.2): subject to a > 0, 
q/>0,  0 < / 3 ~ < 1 ,  0 < L < 2 0 ,  0<x ' ,~<  1, -50~<7~/L<~50,  and-50~<Tt2/L<~50.  

Maximum values of the ozone concentration are sought by the following scheme. To decrease the 
computer time and determine the best initial point in the space of optimization parameters (4.2), the optimum 
is initially sought using the model of one-dimensional gas flow on the axis. In this case, the parameters over 

' The optimization program synthesizes the methods of which optimization is performed are a,  q,/3, L, and x.. 
random and deterministic search. The random search is used in the initial stage of optimization. The method 
of configurations is used as a deterministic algorithm. Its principles are described in [9]. Search for an optimum 
for one-dimensional gas flow yields the following optimum parameters: 

a = 25.97, q = 0.25, ~ = 0.0588, L = l l .7cm,  x', = 0.21, (4.3) 

which ensure a maximum value ~3 = 0.10349% of the molar fraction of ozone at the nozzle exit. Determination 
of the optimum set of parameters (4.3) required 232 references to the functional. The resulting values are taken 
as an initial point, and the optimum is further sought over parameters (4.2) under the assumption that the 
gas flow is two-dimensional. The integral of the concentration of ozone molecules at the nozzle exit is used as 
a functional: 

F(A ) = = r  

0 

The fixed final value of the flow function r =1.56.10 .2 (0 ~ r  ~< r is considered. In this case, search for 
' = 0.202, ~,~ = 22.14, 7~ = -174.2, an optimum yields ~ = 34.87, q = 0.28, /3 = 0.0542, L = 13.47 cM, x. 

and (~ = 0.1136%. 
In this stage, it is necessary to refer to the functional F(Ai) 48 times, which is far less than in 

determining parameters (4.3). This scheme of optimization procedure reduces considerably the total time 
of machine search, since the computer time necessary to calculate the flow field in the nozzle under the 
assumption of two-dimensional gas flow is approximately 1.5-2 orders of magnitude greater than the time 
required to determine a one-dimensional flow field. 

Figure 1 shows the contour of a supersonic gas-dynamic nozzle obtained by solution of the optimization 
problem. The dimensionless length x/L is plotted on the abscissa, and the quantity y/y, on the ordinate (y, is 
the nozzle height in the minimum cross-section). The figure shows streamlines for various values of ~b = const 
and the lines of equal mole fractions of ozone. Curve l corresponds to the surface of jump in concentration 
l(r of atomic oxygen. The maximum slope of the contour of the supersonic part of the nozzle is attained 
at point z /L ,~, 0.1 and is equal to 18 ~ It is seen that the part on which the nozzle expands rapidly must be 
followed by an extended plane-parallel part in which ozone is mainly formed. Figure 2 shows a similar pattern 
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of identical Mach numbers for the first half of the same optimum nozzle. 
In the process of solving the problem of searching for an optimum, it is possible to determine, along 

with the optimum point, the topographic location of the levels of constant values of the functional under study 
(in our case, the mole fraction of ozone). For this, two different parameters A1 and A2 among those under 
optimization are chosen and varied. Values of the remaining parameters are fixed and set equal to the optimum 
values that correspond to optimization over the entire set of parameters. Next, lines of constant values of the 
tested functional are found in the plane (A1, A2). This provide not only a clear idea of the optimum found 
but also quantitative data on nonoptimum regimes near the optimum. Such data are of interest in conducting 
experiments and evaluating the "steepness" of change of the functional in the vicinity of the optimum. 

Figure 3 shows the map of lines of equal ozone concentrations with respect to the parameters 
characterizing the location of the surface area of jump in concentration I(r of atomic oxygen in the nozzle. 

' and 3'~ which determine the jump plane are varied. The mole fraction of ozone ~3 at the The parameters z .  
optimum point is taken as unity. To simplify interpretation, the level curves in the figure are plotted for the 
quantities z .  and x,'yl~bf. It is evident that in the vicinity of the optimum the functional is gently sloping, 
but with distance from the optimum, the ozone concentration decreases greatly. 

The current uncertainty in the rate constants of the processes considered can influence the shape of the 
optimum nozzle and the maximum ozone concentration. In this connection, a calculation (in a one-dimensional 
formulation) is first performed to clarify the effect of variation of the rate constants on the ozone concentration 
for the optimum set of parameters (4.3). For this, the rate constant I( i is varied as follows: 

Kj = m j K  ~ and Kj = 1/my. K ~ (4.4) 

where mj is a constant and K ~ is the recommended constant from [5]. The ozone concentration (at the 
nozzle exit) is then calculated for this variation of the constant Kj. It turns out that the change in ozone 
concentration is primarily affected by ozone formation O + 02 + (M = 02) --+ 03 + M (+33 and -34.4% at 
m i = 2 and 1/mj = 1/2) and ozone dissociation 0 + 03 ~ 02 + 02 ( -26.2  and +21.6% at mj = 2 and 
1/rnj = 1/2). With this variation, the effect of the rate constants of other processes is less than 2%, and, 
hence, the two above-mentioned reactions are fundamental in the case at hand. 
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According to [5], the possible spread of the constants of these processes does not exceed 150-200%. 
Because of this, the optimization problem (in a one-dimensional formulation) can now be solved with maximum 
deviations of the constants I(~ from the recommended K ~ The main results of the solution are presented in 

Table l and Fig. 4. In Table l, m~ I) corresponds to the factor mj in (4.4) for the reaction O + 02 ---* 03 

(M = 02), m~ 2) to the reaction O + 03 -~ 02 + O2, and 03 to the optimal ozone concentration normalized 
to its value in (4.3), i.c., for m i =_ 1. 

Figure 4 presents the optimum contours of supersonic nozzles obtained by solution of the optimization 
problem (with variation of the rate constants of the processes). Here, the length x is plotted oil the abscissa 
and the dimensionless degree y/y ,  of flow expansion on the ordinate. The curve numbers correspond to the 
variant numbers in the table and the symbol 0 designates the main contour for m i - I. The vertical bars 
above the abscissa correspond to the jump coordinate x, in a nozzle with the same number. The plane-parallel 
part of the nozzle is not presented in the figure. It is ,,~10 cm for all variations of the constants. The results 
presented in Table l and in Fig. 4 show that allowance for the uncertainty in the rate constants can influence 
significantly the results of solving the problem of a gas-dynamic ozonator. In this connection, the problem of 
refining these constants arises. On the other hand, the shape of the nozzle is not among the crucial factors 
that determine the numerical values of ozone concentration. This is evidenced by the data of Table 1 (the 

values for O~ ~ for ozone concentrations in the gas flow in the initial nozzle whose contour is designated by 
the symbol 0 in Fig. 4. 

Thus, the program presented herein makes it possible to solve variational problems of gas dynamics 
with physicochemicM transformations with the allowance for the two-dimensionality of the gas flow. 
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